PHYSICS 428-1 QUANTUM FIELD THEORY I

Ian Low, Fall 2008

Course Webpage: http://www.hep.anl.gov/ian/teaching/QFT/QFT_Fall08.html

ASSIGNMENT #4

Due at 3:30 PM, October 24th

(One page and four problems.)

Reading Assignments:

Section 3.2 of Peskin and Schroeder.

Problem 1

Do Problem 3.4 in Peskin and Schroeder, but leave out part (e).

Problem 2

Do Problem 3.5 in Peskin and Schroeder.

Problem 3

(a) In the class we showed that the conserved currents corresponding to spacetime translations $x^{\alpha} \to x^{\alpha} - a^{\alpha}$ are the energy-momentum tensor $T^{\mu\nu}$. Since we have been considering Lorentz-invariant quantum field theories, derive the conserved currents corresponding to infinitesimal Lorentz transformations $\Lambda^{\alpha}_{\beta} = \delta^{\alpha}_{\beta} + \omega^{\alpha}_{\beta}$.

(Hint: recall that in the case of translations, there are really four currents $T^{\mu\alpha} \equiv (j^{\mu})^{\alpha}$, one for each a^{α} . In this case there are really six conserved currents $M^{\mu\alpha}_{\beta} \equiv (j^{\mu})^{\alpha}_{\beta}$, one for each ω^{α}_{β} . You may wish to express $M^{\mu\alpha}_{\beta}$ in terms of $T^{\mu\alpha}$.)

(b) What is the physical interpretation for each of the conserved charges in (a)? Separate your discussions into those corresponding to rotations and those corresponding to Lorentz boosts.

Problem 4

- (a) A Lorentz transformation $\Lambda^{\mu}_{\ \nu}$ leaves the metric tensor $g_{\mu\nu}$ invariant: $\Lambda^{\mu}_{\ \alpha}\Lambda^{\nu}_{\ \beta}$ $g_{\mu\nu}=g_{\alpha\beta}$. Use this equation to prove that $\Lambda^0_{\ 0} \geq 1$ or $\Lambda^0_{\ 0} \leq -1$.
- (b) Show that if two Lorentz transformations Λ_1 and Λ_2 both have $(\Lambda_1)^0_0 \ge 1$ and $(\Lambda_2)^0_0 \ge 1$, then $\Lambda_3 = \Lambda_1 \Lambda_2$ also has $(\Lambda_3)^0_0 \ge 1$. In other words, this sign is preserved under Lorentz group action and can be used to classify Lorentz transformations.
- (c) Show that if two Lorentz transformations Λ_1 and Λ_2 both have $\operatorname{Det}(\Lambda_1) > 0$ and $\operatorname{Det}(\Lambda_2) > 0$, then $\Lambda_3 = \Lambda_1 \Lambda_2$ also has $\operatorname{Det}(\Lambda_3) > 0$. In other words, this sign is preserved under Lorentz group action and can be used to classify Lorentz transformations.
- (d) Show all Lorentz transformations with $\operatorname{Det}(\Lambda) > 0$ and $\Lambda^0_{\ 0} \ge 1$ form a subgroup of the Lorentz group.